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LIQUID CRYSTALS, 1988, VOL. 3, No. 2, 249-258 

Energetics of screw dislocations in smectic A liquid crystals 

by HARALD PLEINER 
Department of Physics, University of Colorado, Boulder, Colorado 80309, U.S.A. 

(Received 14 April 1987; accepted 2 July 1987) 

We derive the self-energy of a single screw dislocation in smectic A liquid 
crystals allowing for bend curvature in the bulk. For the core region two models 
are investigated: a nematic one including bend and twist curvature and an isotropic 
one including surface curvature energy. The former is energetically favourable. 
For both models the interaction force between two parallel screw dislocations is 
zero within the linear theory. Taking into account non-linearities perturbatively, 
an interaction potential is obtained, which is proportional to the logarithm of the 
distance of the screw dislocations. 

1. Introduction and results 
The study of screw dislocation defects in smectic systems is important, not only 

because they are numerous in a real sample and influence the macroscopic behaviour 
of smectics, but also since they serve as a prototype of defects for deriving macroscopic 
laws of motion for them. 

In the present paper we treat the statics (energetics) of one or more screw dis- 
locations, amending earlier treatments of that problem [l-61. First we allow for bend 
curvature in the bulk. Although generally present in distorted smectics, bend is 
usually neglected against elasticity, if the distortions are small. Near the screw 
dislocation defect, this omission is, however, unjustified. The total bend curvature 
energy in the bulk is comparable to the total elastic energy due to compression or 
dilation of the smectic layers. Both energies are ‘non-linear’, i.e. they would vanish in 
a linearized theory. In a model, where the core of the defect is nematic (i.e. no smectic 
layers inside the core, but a director field), the inside director field is found to be free 
of singularities, continuous at the core boundary and carrying twist and bend dis- 
tortions. The appropriate total inside twist and bend energies are again comparable 
to the outside curvature and elastic energies (9 3). In Appendix A it is shown that the 
inclusion of bend and (inside the core) twist does not change the results for the 
magnitude of the core radius e, [4]. In 0 3 a model with an isotropic core is studied. 
The lack of a director field inside the core relieves the system of the inside curvature 
energy at the expense of a curvature surface energy. The importance of this surface 
energy in the presence of defects has been stressed previously [3]. Comparing the 
energies of the two different models, we come to the conclusion that a nematic core is 
the most favourable. The reason is mainly that, at a temperature, where the bulk of 
the smectic state is in equilibrium, usually the thermodynamic energy of an isotropic 
core is higher than that of a nematic core. For screw dislocations with large Burgers 
vectors the isotropic core becomes even more unfavourable, since the thermodynamic 
energy increases (with the square of the Burgers vector), while the curvature energies 
are independent of it. The surface curvature elastic constant was thereby assumed to 
be smaller, but of comparable magnitude than the Frank constants (Appendix B). 
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250 H. Pleiner 

In Q 4 the interaction of two screw dislocations at a distance L is discussed. Within 
the linearized theory, both models, one with bend and splay inside the core and the 
other with the surface curvature at the core radius, show no interaction energy at 
all-a result already well-known with respect to bulk properties [l]. An attempt is 
made to derive the interaction due to the non-linearities in the elastic and curvature 
energies by means of a perturbation expansion. In the first step interaction forces are 
obtained by using approximate solutions of the non-linear elastic equilibrium 
problem in the usual Peach-Koehler formula as well as by using the linear solutions 
in a non-linear Peach-Koehler formula (with non-linear stresses). In the leading order 
of e,/L this interaction force falls off proportional to L-’ giving rise to a logarithmic 
interaction potential. This greatly resembles the interaction of straight, parallel 
electrical currents. Of course, this analogy with (two-dimensional) magnetostatics 
does not come as a surprise [l]. An array of parallel screw dislocations thus behaves 
(at least in the approximation used) similar to flux lines or tubes in a type I1 
superconductor above the first critical magnetic field. For a dilute system of screw 
dislocations the elastic constant of an equilibrium array seems to be very small and 
a liquid-like behaviour more probable. The motion of the screw dislocations is then 
overdamped [5 ] .  

2. Bulk bend energy of a screw dislocation 
In the conventional description of smectic A liquid crystals and their defects the 

gradient free energy contains layer elasticity and splay curvature of the director. Bend 
curvature is usually neglected in smectics, since for small gradients it is smaller by two 
orders of gradients than the leading elastic energy contribution. For large gradients, 
however, the bend term can become comparable to the other gradient energy terms 
and is no longer negligible. This is precisely what happens near the dislocation defect 
(or its core). In the following we will investigate the influence of the bend term to the 
energetics of a screw dislocation. 

The starting point is, therefore, the following gradient energy: 

(2.1) B Kl K3 
E ,  = - (1 - li2 - Vul)’ + - (div fi)’ + - (r i  x curl A)’, 

2 2 2 

where u is the displacement of the layer structure along the layer normal 

In the conventional description (i.e. without the bend term) the equilibrium 
solution, 6@u = 0, appropriate to the topology of a screw defect of strength m, is 
(in cylindrical coordinates) [ 11 

u = 89, (2.2 a )  

A = (iz - Vu)l i ,  - Vul-I. 

f i  = (... - ; i d )  ( 1  + $ ) I ” ,  (2.2 b) 

where the pitch of the screw, 8 ,  is related to the layer thickness d by 8 = md0/27c 
(m = f 1, f 2,.  . .). This solution (equations (2.2)) is valid only outside the core 
region (e  2 e,), while inside the core-in the simplest model for the core, which we 
wish to adopt here-the smectic order parameter is zero and there are no layers and 
thus, u is not defined [4]. 

Taking into account the bend term, it is easily recognized that the solution 
(equations (2.2)) is no longer an exact equilibrium solution. It is, however, an 
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Screw dislocations in smectic A 25 I 

equilibrium solution if @ >> 8 .  We will in the following still use equations (2.2) in the 
whole outside region assuming that it deviates only slightly from the exact solution 
for @ 2 e,. This procedure is justified by the observation that for calculating energies 
the use of approximate formulas, which are exact only for @ >> 8 ,  nevertheless lead 
to energy expressions, which are quite close to the exact ones, even if e, = 8 (cf. the 
discussion in [4] after equations (13)). For the gradient energy we then find 

E’ = nB [821n+(l + 8 2 ~ ; 2 ] ’ 1 2 )  + e:([l + 82~cp2]li2 - 1) - 481 

71 + K3[ln(l + 82@;2) - 82(B2 + @:)-‘I, 

71 71 x - Ba4eCp2 + K384~cp4  for Q,  >> 8 .  
8 

(2.3 a )  

(2.3 b) 

Since K3 and B82  are of the same order of magnitude, so are the bend and the elastic 
energy and the omission of the former is not justified. 

3. Core energy of a screw dislocation 
3.1. Nematic case 

Up to this point we have only considered the region outside the core. Inside the 
core region there are no layers and no elastic energy due to their displacement. There 
is, however, still the director field and its distortions give rise to curvature energy. Of 
course, the specific form ri in the outside region, equation (2.26), cannot be trans- 
ferred to the inside region. In that case ri would be ill-defined for @ = 0 and the 
associated bend energy would diverge (logarithmically). There is also no topological 
need for such a defect in the ri field and a non-singular ri field can be expected. Indeed, 
equation (2.2 6) was obtained under the restriction that the director is identical with 
the layer normal in smectic A. However, inside the core this condition on ri is lifted 
and the equilibrium structure of the A field is determined by minimizing the Frank 
curvature energy (now including twist) under the conditions, that A is non-singular 
and fits to the outside ri field at the core boundary e = e,. In the following we will 
adopt e, = 8 ;  although this result was derived in [4] neglecting bend (and twist), in 
Appendix A it is shown that it remains true in the present case. Thus, the boundary 
condition for the inside ri field is 

A(@ = e,) = 2-1’2(tz - tg). (3.1) 

From the form, equation (2.26), for the outside field and the boundary condition, 
equation (3.l), it is very tempting to try for the inside field 

It is non-singular, fits the boundary condition (2.10) and has the additional good 
features that it contains no splay (divA = 0 like the outside field) and that bend 
(ri x curl A) is also continuous at the core boundary. Only twist (A curl A # 0) makes 
a finite jump at @ = e,, since it is zero outside the core?. However, it is not an exact 

t If the curvature energy includes second order gradients of ri, then the first order gradients 
would have to be continuous at  the boundary, and this jump of the twist would be smeared out. 
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252 H. Pleiner 

equilibrium solution with 66, /ani  = 0. Only for e + 6 equation (3.2) minimizes 6 , .  

This is quite analogous to the outside solution, which is only exact fo re  9 6 .  Again 
we expect that the use of equation (3.2) instead of the correct solution changes the 
calculated energies only by numerical factors of order unity. For the twist and bend 
energy inside the core one finds (e, = 6 )  

E; = nK2,  (3.3 a )  

n 
E; = - 2 K,(ln2 - 3) (3.3 6) 

the latter is identical to the bend curvature energy outside the core (equation (2.3 a))  
for e, = 5. In addition to the curvature energy the core also contains a thermo- 
dynamic energy, since it is in a nematic state, which has a higher free energy than the 
smectic state. Otherwise, at  the given temperature, the smectic state would not occur 
as the ground state in unconstrained bulk conditions. This energy can be written as 

where a and c are the two first coefficients of a Ginzburg-Landau expansion for the 
smectic order parameter. This form of E,,, is suitable, even if there is no bulk smectic 
A-nematic phase transition. 

3.2. Isotropic core 
In order to avoid the singularity of the layer structure at  the centre of the screw 

dislocation (and the resulting divergence of the elastic energy) a nematic core was 
employed in the preceding section. However, instead of assuming a nematic core one 
can also think of an isotropic core, i.e. not only the smectic order but also the nematic 
order parameter is zero inside the core and neither layers nor a director is present. In 
such a model, there is no elastic and no curvature energy attached to the core region. 
The thermodynamic energy of such a core contains (in addition to equation (3.4)) the 
Ginzburg-Landau free energy of the nematic order parameter 

E,,,, = nef ("' - + - ti) 3 
4c (3.5) 

where ii, Z are the first two Ginzburg-Landau coefficients with respect to the nematic 
order parameter. 

This core model introduces a free surface for the nematic order. It is well known, 
that with such surfaces, a surface curvature energy density [7] 

E, = K,div (fidiv ri - (2 - V ) f i )  (3.6) 

is attached. In Appendix B it is shown, that K, has to be negative and lKsl to be smaller 
than both K, and K2.  Since there is no general reason, however, for K, to be 
small, we will assume in the following, that IK,l 5 K, or Kz.  For the director field, 
equation (2.1 1 a), the surface energy (per length) at  e = e, is 

(3.7) 
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Screw dislocations in smectic A 253 

For e, 9 6 equation (3.7) coincides with the appropriate result of [7], which was 
obtained by using a gradient expansion of E, valid only for e, & 8 .  The core radius 
e, of this model is again of the order ti (Appendix A). 

The question is then, which one of the two models of screw dislocations (model 
I with nematic core, and model I1 with isotropic core) has the lower free energy and 
is, therefore, the real one? Since the bulk energies are identical in both cases, they drop 
out of this comparison. The difference comes from the curvature core energies in I, 
equation (3.3), and the surface energy, equation (3.7), and the excess thermodynamic 
energy of TI, equation (3.5), compared to I, equation (3.4)t. For e, = ti, model I has 
lower energy if 

7l  ii2 
2 4z nK2 + - K3 (In2 - 3) < nlKsl + nef -. 

To decide this clause, it is necessary to compare K3 with ii2/4C. The latter is the free 
energy density of the isotropic state minus that of the nematic state. If the curvature 
energy of distortions of the director (with wavenumber q), say q2K3, were of compar- 
able magnitude as ii2/4F, these distortions would destroy the nematic state. This does, 
however, not happen as long as the distortions are on a macroscopic length scale. 
Only on a molecular scale, q = qo = 27l/d,,, can we expect 

(3.9) 
ii2 
4? 

qiK3 x - .  

Using this estimate and IKsK,I 5 K 2 ,  the inequality (3.8) reduces to 

+ h ( 2  - 3) < m2, (3.10) 

which seems to be fulfilled for screw dislocations of any strength, but certainly for 
those with large m. The latter fact can easily be understood. Since the core radius 
increases with m, the thermodynamic energy, which is proportional to the area, also 
increases. For the curvature energies, however, this geometrical increase is compen- 
sated by the decrease of the energy density, which occurs because the same amount 
of bend or twist (fixed by the boundary conditions) can then be distributed on a larger 
length scale. Thus, model TI becomes more unfavourable, if m increases. Although 
equation (3.10) is true even for m = 1, one should keep in mind, that rather crude 
estimates were necessary to arrive at this result; so it is very likely but not absolutely 
sure, that even for m = 1 model I is the energetically favourite model. 

4. Interaction of screw dislocations 
4.1. Linear 

We will discuss the interaction energy of two separated screw dislocations first 
within the linearized theory, i.e. when the Euler-Lagrange equations, which deter- 
mine the displacement field, are linear. We can then employ the superposition prin- 
ciple to find a solution. For two screw dislocations, one of strength 6 ,  along the z axis 
and one of strength 62 at x = L, y = 0, the displacement is 

u = 6, tan- l  + 6,tan-1- - = UI + U 2 ,  (4.1) 
X x - L  

t There is no surface (or interface) energy in model I, since for e = 6 the inside ri-field (3.2) 
and the outside field (2.2) give both the same value for (ti * V)ri. 
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254 H. Pleiner 

with the appropriate ri field in linear order 

where ei  = - 2eL cos 0 + L2. Equation (4.1) and (4.2) are valid only in the bulk, 
i.e. outside the cores of both the dislocations. It is easy to realize, that solutions (4.1) 
and (4.2) do not give rise to any energy (quadratic in 6, or ti2). The elastic energy and 
the bend energy are zero in a linearized theory anyway and splay does not occur, since 
Alu = 0 or divA = 0 as in the case of a single screw dislocation. This lack of an 
(interaction) energy reflects the well-known fact that there is no force between screw 
dislocations within the linearized theory [l] (disregarding core effects). We will now 
show that this negative result holds even if core effects are included. We will first treat 
model I (nematic core). 

Inside the core the ri field is found by minimizing the Frank free energy, which 
requires in linear order 

Vdivri = 0, Ari = 0, Vfri = 0. (4.3) 

An exact solution of equation (4.3), which contains no singularities and which fits the 
boundary conditions at e = e, set by equation (4.2) reads 

61 QP, - LPy 
QC @ - 2QLCOSO + L 2 '  

ri' = ; - -  g - 6  
2 2 Q H  2 2 (4.4) 

Equation (4.4) constitutes the ri field inside the core of the first screw dislocation 
( t i l ,  along the z axis) under the influence of the second screw dislocation (ti2, at the 
distance L). This field is splay-free (divri = 0) and, in linear order, also bend-free 
(ri' x curlri' = 0) (like the outside field) but shows twist (ri' - curlvi' # 0). However, 
the twist curvature energy density is not influenced by the second screw dislocation 
and reads 

(4.5) 
6: 

E~ = +K2(A' -curlri')2 = 2K2-, 

which is the result for one single crew dislocation?. There is no interaction energy and, 
thus, no interaction force related to the core structure. Hence, in linear approxi- 
mation, screw dislocations with nematic core do not interact. The same is true for 
model I1 dislocations. The surface energy, equation (3.6), a t  the surface e = ec 
obtained by using the displacement field, equation (4. l), contains only a vanishing 
interaction part - h, h, (apart from contributions - h:, -h: which do not vanish) and 
does not lead to an interaction force. This result coincides with a recent result in [6] 
(where a Peach-Koehler formula is used), if corrected for an algebraic error. Hence, 
for the model I1 screw dislocation there is no interaction within the linearized theory. 

QC 

4.2. Non-linear 
There is, of course, an interaction between screw dislocations if the linearization 

is avoided. To derive that energy, one has to know, however, the exact displacement 
field (and vi field inside the core), which minimizes equation (2.1) under the topological 

tEquation (4.5) leads to  a total twist curvature energy, which is off by a factor of 2 
compared to equation (3.3 a), because of the linearization employed in 5 3.1. 
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Screw dislocations in smectic A 255 

constraints of two screw dislocations. Clearly, equation (4.1) is not such a solution, 
and until now, no analytic solution has been found. Nevertheless, it is possible to 
obtain a glimpse of the interaction by using a perturbation expansion. With an ansatz, 
u = ul + u2 + uw, where uI and u2 are the linear solutions, equation (4.1), and 
splitting up the Euler-Lagrange equation appropriate to equation (2. I )  into linear 
and non-linear parts, one obtains in a first order perturbation an equation for uw of 
the form 21inuW + 2non.,in(uI + u 2 )  = 0. A solution of this equation for L S e is 
(only Auw is needed in the following) 

This uw constitutes the perturbation of the simply superimposed solution ul + u2 due 
to non-linearities in the vicinity of the first screw line ( L  9 e 2 e,,). Such a pertur- 
bation expansion cannot be expected to converge for L z e,; but for L 9 ec, where 
the linearized theory is not too bad, one can hope that it is an asymptotic expansion, 
whose first terms approximate the exact result. Using Equation (4.6) in the usual 
Peach-Koehler formula (with linear stresses) [I]  one obtains in leading order of e,/L 

6 ; 6 2  1 
et, L 

Fi') = (Be:, + K 3 )  - - + (sub 1 0 sub 2) (4.7) 

the force per unit length on the first screw dislocation due to the presence of the second 
one at  the distance L apart (e,! M b,); 

There is a second contribution to the interaction force in first order. Using the 
linear solution, equation (4. I ) ,  in a non-linear Peach-Koehler formula, i.e. one with 
non-linear stresses (cf. equation (12) of [ 5 ] )  one finds (in the lowest order of e,/L) the 
result, equation (4.7), once again. The core energies do not contribute to the inter- 
action force in order L- ' ,  The forces, equation (4.7), can be expressed by an interaction 
potential 

U = 2crlnL, (4.8) 

with c1 = B 6 , 6 ,  + K 3 ( 6 1 / 6 2  + 62/Bl )  for = ltjl1, eC2 = 1621. This result re- 
minds use of two-dimensional electrodynamics, and indeed the analogy is closest with 
magnetostatics in the presence of constant line currents. The current strength corre- 
sponds to the dislocation strength, the magnetic field to Vu and equation (4.7) to 
Ampere's law (at least the B part of it). Of course, this analogy breaks down in the 
next step of perturbation expansion. 

The interaction, equation (4.8), is long-ranged, which clearly shows that there is 
no characteristic length at which the linearization procedure is a good one (i.e. at 
which the interaction vanishes). The result, equation (4 .Q  is valid for L S e, only, 
and for L 2 e, higher order terms (e.g. e,/L etc.) come into play. These higher order 
terms can, at least in principle, destroy the monotony of the interaction potential. In 
that case, there can be a potential wall for screw dislocation of opposite handedness, 
preventing their annihilation, or there can be a potential minimum for screw dis- 
location with equal handedness, giving rise to bound pairs. Such phenomena can be 
provided by terms like b:bIL-2 (in the force, equation (4.7)), which do not change sign 
with the handedness of the screw dislocations. However, for L 9 e, such a behaviour 
is ruled out by equation (4.8). If the screw dislocations are very near to each other 
( L  - 2 ~ , ) ,  the whole perturbation scheme is likely to break down and the really 
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256 H. Pleiner 

non-linear nature of the interaction shows up. Since the distortions due to the 
different screw dislocations are no longer additive, the interaction does depend on the 
number and the position of all screw dislocation. Hence, the interaction forces become 
non-local and n body forces. This is however beyond the scope of the present 
investigation. 

For a dilute system of screw dislocations ( L  p e,.) small displacements A from a 
given equilibrium position give rise to restoring forces of the order of (d2U/dL2)A. The 
elastic constant of such an equilibrium configuration is, therefore, EL-’, which is 
much smaller than the elastic constant of the smectic layers themselves. Probably, 
thermal fluctuations destroy such a weak ‘lattice’ of screw dislocations leaving them 
in a liquid state. For more condensed systems ( L  smaller) this may be completely 
different. Moving as ‘liquid’ particles, the screw dislocations experience inertial forces 
(with an inertial mass somewhat larger than their physical mass [5 ] ) ,  friction forces 
proportional to their velocity [5 ]  and the interaction forces. Since friction is large, 
strongly overdamped motions can be expected. 

I would like to thank the Deutsche Forschungsgemeinschaft for financial support 
and N. A. Clark and his group for the kind hospitality in Boulder. 

Appendix A 
Core radius 

(a)  Nematic core 
In [4] the core radius was determined by minimizing the sum of the outside and 

inside energies of a screw dislocation without bend and twist. In this Appendix we will 
show that the same procedure with bend and twist included does not change the result 

The bend energy for the outside region and bend and splay for the inside region 
(equation (3.3) without putting e, = ti) are together the total curvature energy of the 
screw dislocation 

e,. % ti. 

For ti z e,, which is the expected result, and for K2 % K3/4 ,  Bbz z K, the total 
curvature energy is approximately equal to the elastic energy E,, . Instead of minimiz- 
ing the sum Eel + E,,,, as in [4] ,  we now have to minimize 2E,, + E,,,,. The core 
radius obtained, is by an (irrelevant) factor of 2’14 larger than the old one, which 
shows, that the curvature energies do not change the estimate for the core radius. 

(h)  Isotropic core 
In this case the additional energies not considered in [4] are the surface energy, 

equation (3.7), the bend energy in the outside region and the excess thermodynamic 
energy for the core being isotropic rather than nematic (cf. equation (3.5) 
AE,.,, = ne,2if2/4?. Minimizing the sum of these three new energy contributions alone 
leads to e, NN ti, which shows that these energies cannot change the estimate for e,. . 
For this, it is assumed that the actual temperature is far from the bulk phase transition 
temperature, so that ii2/4i; % K , 6 - 2 .  
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Appendix B 
Surface free energy 

[7] can be written in the following equivalent forms 
The Frank free energy density for director flutuations including the surface term 

K,  K2 K, - (divri), + - ( r i  * curl ri)' + - (A x curl ri)' 
2 2 2 

Thermodynamic (i.e. static) stability requires that E is a non-negative quadratic form 
of small deviations from the true equilibrium solution tio = const. For an infinite 
system equation (B 1 )  immediately shows, that K, 2 0, K2 2 0, K3 2 0 are the 
well-known necessary and sufficient stability conditions. In a finite system the surface 
term does not drop out. In the special case that the fluctuations of r i ,  Sn, can be written 
as Sn = - V, u (V, is the gradient perpendicular to rio = e,) which is the relevant case 
for slightly distorted smectics), equations (B I )  and (B 2) reduce to 

This is a non-negative quadratic form, if (in addition to K, 3 0) 

Ks 6 0, IKsI 6 K , .  (B 4)  

In the general case, ri = (dn,, Sn, , 1 - (1/2)[Sn; + Snt]), the part of E ,  which is 
bilinear in gradients of Sn, and 6n,,  turns out to be non-negative, if (in addition to 
the stability conditions above) there is also 

KI G K,. (B 5 )  

For thermotropic, rod-like, low molecular weight molecules, equation ( B  5) is usually 
the stronger condition than IKsK,I d K, .  

In addition to the surface term K, div [r i  div ri - (r i  * V)ri] used in equation (B l ) ,  
one could think of another surface term [7] KF2 div [ri div ri + ( r i  - V)ri]. Although the 
latter does not change the equilibrium condition, it leads to a first order term 
2Ks,nlVlV,n, in the energy density which is not compatible with thermodynamic 
stability. Hence, K,, = 0. An illustrative example for this feature is a fluctuation of 
the form 6n = ccxzP, about the equilibrium solution ri" = Z:. The free energy would 
then be K,,a + Kc?, which is not positive semi-definite, except for Ks2 = 0. 

In [7] the surface curvature constant K, was related to K,  and K, via a simplified 
molecular picture. In our notation this relation reads 

- K ,  = +(K, - K2). (B 6 )  

which is consistent with the stability requirements, if K ,  < 3K2. For the usual smectic 
systems this inequality seems to be fulfilled and the underlying molecular picture to 
be appropriate. Since typically K,  z 2K,, equation (B6) predicts - K ,  z K2/2 z 
K , / 4  which shows that although IKsI has to be smaller than K ,  or K, ,  it is still of 
comparable magnitude. 
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